Tetrahedron Letters 51 (2010) 5834-5837

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

TiCl₄-promoted direct N-acylation of sulfonamide with carboxylic ester

Shaomin Fu^a, Xiaoyan Lian^a, Tongmei Ma^a, Wenhua Chen^b, Meifang Zheng^a, Wei Zeng^{a,*}

^a School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China ^b School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China

ARTICLE INFO

ABSTRACT

work-up procedure.

Article history: Received 8 July 2010 Revised 20 August 2010 Accepted 31 August 2010 Available online 6 September 2010

Keywords: N-Acylation Lewis acid N-Acylsulfonamide Carboxylic ester Acylating agents

Acylsulfonamide boxylic ester dating agents Many bioactive natural products and medical molecules consist N-acylsulfonamide (NAS) structural motifs. For instance, several

of *N*-acylsulfonamide (NAS) structural motifs. For instance, several recently developed drugs, including an inhibitor of human asparagine synthetase,¹ a therapeutic agent for Alzheimer's disease,² and a hepatitis C virus NS3 protease inhibitor³ are all derived from NAS precursors. In addition to being used as carboxylic acid bioisostere because of suitable acidity ($pK_a = 4-5$),⁴ NAS functional group is also incorporated in organocatalysts and plays an important cooperative catalytic role in certain enantioselective asymmetric reactions.⁵ Moreover, the family of acylsulfonamides was also employed as a "safety-catch" linker for efficient chemical protein synthesis in solid-phase reaction.^{1,6}

Generally, *N*-acylsulfonamide derivatives are prepared via direct condensation of a carboxylic acid with a sulfonamide using carbodiimides (EDC-HCl or DCC) or *N*,*N*'-carbonyldiimidazole (CDI) as coupling agents.⁷ Of course, more reactive carboxylic anhydrides and acid chlorides are also used in the presence of a base or an acid.⁸ An alternative synthetic approach starting from sulfonyl chloride and carboxylic amides in basic reaction condition can afford *N*-acylsulfonamide product.⁹ Recently, sulfonyl isocyanate or *N*-acylbenzotriazoles were used as acylating agents under basic conditions.¹⁰ Moreover, the preparation of acylsulfonamide from aryl halide and sulfonamide catalyzed by Pd (II) and Mo(CO)₆ under microwave irradiation was also reported.¹¹ Recently Chan found Rh (II) could catalyze intermolecular oxidative sulfamidation of aldehyde to form *N*-sulfonylcarboxamide by using PhI(OCOtBu)₂ as an oxidant.¹² Although most of the methods provide various

approaches to make *N*-acylsulfonamide starting from parent sulfonamide and acylating agents such as acyl chlorides or anhydrides or carboxylic acid, no studies have reported the direct N-acylation

© 2010 Elsevier Ltd. All rights reserved.

Table 1

Catalyst screening for N-acylation from *p*-toluene sulfonamine and ethyl acetate^a

Several Lewis acids were investigated as promoters in the intermolecular or intramolecular direct N-acyl-

ation reaction of sulfonamides using carboxylic ester as an acylating agent. TiCl₄ was found to possess the

highest activity and enhanced efficiently sulfonamide to form N-acylsulfonamides under optimized

conditions. This method provides a novel approach to make N-acylsulfonamides from ester via an easy

Entry	Catalyst	Yield ^b (%)	
1	AlCl ₃	No reaction	
2	FeCl ₃	<5	
3	TiCl ₄	53	
4	$Cu(OAc)_2 \cdot H_2O$	No reaction	
5	Fe ₂ O ₃	No reaction	
6	MgO	No reaction	
7	FeCl ₂ ·4H ₂ O	No reaction	
8	ZrCl ₄	No reaction	
9	MnCl ₂ ·4H ₂ O	No reaction	
10	ZnCl ₂	No reaction	
11	CuCl	No reaction	
12	CdCl ₂ ·2.5H ₂ O	No reaction	
13	NiCl ₂ ·6H ₂ O	No reaction	

 $^{\rm a}$ Reaction conditions: *p*-toluene sulfonamide (2 mmol), ethylacetate (4 mmol), Lewis acid (1.5 equiv), toluene, (4.5 mL), the reaction was carried out at 110 °C for 12 h in sealed tube.

^b Isolated yield after purification.

^{*} Corresponding author. Tel.: +86 020 13570415118; fax: +86 020 22236337. *E-mail address*: zengwei@scut.edu.cn (W. Zeng).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.08.092

Table 2

The effect of solvent, reaction time, and temperature on the TiCl₄-catalyzed N-acylation of p-toluene sulfonamide (**1a**) with ethyl acetate (**2a**)^a

Entry	Reaction time (h)	Temp (°C)	Solvent	Yield ^b (%)
1	12	70	CHCl ₃	34
2	12	110	Toluene	53
3	12	110	DCE ^e	60
4	12	110	TCE ^f	64
5	18	115	TCE	76
6	24	115	TCE	65
7	18	90	TCE	Trace
8	18	100	TCE	62
9	18	120	TCE	69
10	18	140	TCE	Decomp.
11	18	115	TCE	53°
12	18	115	TCE	72 ^d

^a Reaction conditions: *p*-toluene sulfonamide (2 mmol), ethyl acetate (4 mmol), Lewis acid (1.5 equiv), solvent (4.5 mL), the reaction was carried out at the given temperature in a sealed tube.

^b Isolated yield after purification.

^c 1.0 equiv of TiCl₄ used.

^d 2.0 equiv of TiCl₄ used.

^e DCE: 1,2-dichloroethane.

^f TCE: 1,1,2,2-tetrachloroethane.

Table 3

TiCl₄-catalyzed N-acylation of sulfonamines with carboxylic ester¹⁵

of sulfonamides with unreactive carboxylic ester. Accordingly, we present here an alternative preparation method for *N*-acylsulfonamide by using carboxylic ester as acylating agents in the presence of Lewis acid catalyst.

Optimal conditions for this transformation were first determined by systematically investigating the Lewis acid catalysts, reaction solvents, reaction time, reaction temperature, and the catalyst/substrate ratio. Initially, the N-acylation reaction of the readily available *p*-toluene sulfonamide **1a** (2 mmol) with ethyl acetate **2a** (4 mmol) was carried out in toluene by using various kinds of Lewis acid promoters (1.5 equiv, 3 mmol) such as AlCl₃, FeCl₃, TiCl₄, ZrCl₄, MgO, etc., at 110 °C for 12 h in a sealed tube (Table 1). Gratifyingly, we quickly found TiCl₄ was an only promoter for the N-acylation of sulfonamide with ethyl acetate in 53% yield (Table 1, entry 3), and basically other Lewis acids didn't work. Notably, no product was observed when the reaction was carried out in the absence of TiCl₄ even after 48 h. Inspired by these positive results, we further investigated other reaction conditions to define the reaction parameters (Table 2). To find the best solvent, the N-acylation of p-toluene sulfonamide (1a) with ethyl acetate (2a) was carried out for 12 h in different solvents such as CH₃CN, CCl₄, ClCH₂CH₂Cl, Cl₂CHCHCl₂, toluene, dioxane, etc. We

	1	2 ⁽¹¹⁾ 2 + R ² O ² 2	115 ~ 160 °C 45~ 97% yield	R' NH R ² 3	
Entry	Sulfonamide	Carboxylic ester	Time (h)	Product ¹⁶	Yield ^a (%)
1	Me	CH ₃ CO ₂ Et 2a	18	Me Me Me Me Me Me Me Me	76
2	$CI \longrightarrow \begin{matrix} O \\ I \\ I \\ O \end{matrix} \downarrow Ib \end{matrix}$	CH ₃ CO ₂ Et 2a	30	$CI \longrightarrow O H H H H H H H H H H H H H H H H H H$	81
3	$Br \xrightarrow{\bigvee} \overset{O}{\overset{H}{\underset{O}{\overset{H}}} NH_2}$	CH₃CO₂Et 2a	55	$Br \xrightarrow{\bigtriangledown} O \xrightarrow{O} H \xrightarrow{O} O \\ - \overset{O}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}{\overset{O}{{\bullet}}{\overset{O}{{}}{\overset{O}{{}}}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}}{{}$	77
4	$O_2N \longrightarrow O_1 = O_1$	CH ₃ CO ₂ Et 2a	48	$O_2N \longrightarrow O_1 O_1 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	48
5	MeO-	CH ₃ CO ₂ Et 2a	36	MeO – – – – – – – – – – Me – – – – – – – – – – – – Me – – – – – – – – – – – – – – – – – – –	30 (54 ^b)
6		CH₃CO₂Et 2a	24	H	70
7	Me – Me – Me – Me – S – NH ₂ O 1a	CH₃CO₂Et 2b	24	Me – Me	69
8	Me S-NH ₂ 0 1a	CH₃CO₂ <i>t</i> Bu 2c	24	Me Me Me Me Me Me Me Me	56
9	Me – Me – Me – Me – S – NH ₂ O 1a	CH ₃ CO ₂ <i>t</i> Bu 2d	24	Me – S – N – C – Me	72
10	Me - S-NH ₂ O 1a	Me CHCO ₂ Et Me 2e	24	$Me \xrightarrow{O} H H H H H H H H H H H H H H H H H H H$	51 ^c

 R^{1} -SO₂NH₂ + R^{2} C R^{3} $\xrightarrow{\text{TiCl}_{4}(1.5 \text{ equiv.})/\text{TCE}}$ R^{1} R^{1} R^{2} R^{3} R^{1} R^{2} R^{1} R^{1} R^{2} R^{1} $R^{$

(continued on next page)

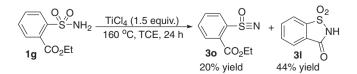
Entry	Sulfonamide	Carboxylic ester	Time (h)	Product ¹⁶	Yield ^a (%)
11	Me S-NH ₂ O 1a	\sim $2f$ CO_2Et	24	$Me - \left(\begin{array}{c} O & O \\ -S & -H & -C \\ O & 3h \end{array} \right)$	97 ^d
12	Me	Me-CO ₂ Et	24	Me Me Me	55 ^d
13	Me	$Cl \longrightarrow CO_2Et$	24	$Me \xrightarrow{\bigcirc} S \overset{O}{\underset{S}{\overset{H}{\overset{O}}} N \overset{O}{\underset{O}{\overset{H}{\overset{O}}} S} N \overset{O}{\overset{O}{\overset{H}{\overset{O}}} S I} \overset{O}{\overset{O}{\overset{O}{\overset{H}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{H}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}}{\overset{O}{\overset{O}{\overset{O}{{}}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{{}}{{}}{\overset{O}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{$	$46^{\rm d}$
14	$Me \xrightarrow{\bigcirc} U = V = V = V = V = V = V = V = V = V =$	\sim CO ₂ Et	24	$Me \xrightarrow{\bigcirc} He \xrightarrow{\longrightarrow} He \xrightarrow$	45 ^d
15	SO ₂ NH ₂ CO ₂ Et ¹ g	_	48		82
16	CH ₃ SO ₂ NH ₂ 1h	CO ₂ Et	24	Me = S = N - C	94 ^d
17	Me – – – – – – – – – – – – – – – – – – –	CH ₃ CO ₂ Et 2a	24	H U N-C-Me 3n	63

^a Isolated yields, average of two runs.

^b 1.5 equiv N(C₂H₅)₃ was added, 30% sulfonamine remains unreacted.

^c 3 equiv ethyl isobutyrate was added.

^d The reaction was carried out at 160 °C.


found the non-polar solvent Cl₂CHCHCl₂ was superior to CHCl₃, ClCH₂CH₂Cl, and toluene (Table 2, entries 1–4, see Supplementary data for complete details). Based on this results, and we further investigated the effect of the amount of catalysts, reaction temperature, and reaction time on the transformation. After an extended reaction time (from 12 to 18 h), treatment of *p*-toluene sulfon-amide and ester in tetrachloroethane at elevated temperature (115 °C) provided the desired N-acylation product in up to 76% yield (Table 2, entry 5). Increasing the amount of catalyst loading from 1.0 to 1.5 equiv. resulted in higher conversion and yield (from 53% to 76%) (Table 2, entries 11 and 5). On the other hand the yield decreased to a certain extent when the catalyst loading is up to 2.0 equiv. (see Table 2, entries 5 and 12). In addition, a longer reaction time (>18 h) and higher reaction temperature (>120 °C) led to tedious work-up and lower yield (Table 2, entries 6, 9, and 10).

With the optimized reaction conditions in hand, a variety of substrates were surveyed to explore the scope of the reaction (Table 3). It was observed that electronic effects from aromatic ring substituents play a key role in N-acylation of sulfonamides, benzenesulfamide with electron withdrawing group such as chloro, bromo and nitro at the para position requires longer reaction time (30-55 h) for the best yield (Table 3, entries 2-4), and total conversion of substrate with electron donating group such as Me- was achieved in a shorter reaction time of 18-24 h (monitored by TLC) (Table 3, entries 1 and 6). But for the substrate 1e, Sulfonamide with a methoxy substituent gave poor yield (30%) at first, then we think the formation of oxonium salt from anisole segment of benzenesulfamide and HCl¹³ might lead to low reactivity, so 1.5 equiv. of N $(C_2H_5)_3$ was introduced to the reaction system for neutralizing HCl, and the corresponding vield raised from 30% to 54% (Table 3, entry 5). Increasing the steric hindrance of substitute group (R²) from carboxylic ester led to a substantial decrease in product yield (Table 3, entries 1 and 10), while decreasing the

steric hindrance of alkoxyl group (R³) from carboxylic ester led to improved N-acylation yield (Table 3, entries 8 and 9).

Moreover, several examples illustrated that aromatic and aromatic heterocyclic carboxylic ester with electron-withdrawing or electron-donating group could react smoothly with sulfamide to afford the corresponding N-acylsulfonamides in 45–97% yields (Table 3, entries 11–14), and changing the substrate from an aryl sulfonamide to an alkyl sulfonamide such as methanesulfonamide also gave the desired acylated product (Table 3, entry 16). Also, the N-acylation reaction of N-substituted p-toluene sulfonamide and ethyl acetate gave a 63% yield of *N*-phenylacetamide instead of the desired N,N-disubstituted sulfonamide (Table 3, entry 17). Moreover, TiCl₄ can also efficiently catalyze 2-sulfamoyl-benzoic acid ethyl ester to form saccharin (31) (Table 3, entry 15) via intramolecular N-acylation in 82% yield at 115 °C (see Supplementary data about the single-crystal X-ray diffraction data of 31), and unexpected dehydration reaction proceeded to afford 20% yield of dehydrated compound (30) except saccharin (44% yield) at higher reaction temperature (160 °C, Scheme 1).14

In conclusion, we have demonstrated TiCl₄-catalyzed direct intermolecular or intramolecular N-acylation of sulfonamide with carboxylic ester for the first time. Importantly, the transformation was extended to the use of carboxylic ester as an acylating agent. Our current efforts are centred on TiCl₄-catalyzed dehydration of sulfonamides, and we will report our studies in due course.

Scheme 1. TiCl₄-promoted dehydration of 2-sulfamoyl-benzoic acid ethyl ester.

Acknowledgments

The financial support for this work from the Program for New Century Excellent Talents in University by Ministry of Education (Grant No. NCET-10-0371) and the Fundamental Research Funds for the Central Universities (Grant No. 2009ZM0262) is gratefully acknowledged.

The authors are grateful to Professor Yuanfu Deng for the X-ray single-crystal analysis.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.08.092.

References and notes

- 1. Koroniak, L.; Ciustea, M.; Gutierrez, J. A.; Richards, N. G. J. Org. Lett. 2003, 5, 2033.
- 2. Hasegawa, T.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2000, 73, 423.
- (a) Lee, Y. K.; Bernstein, P. R.; Adams, E. J.; Brown, F. J.; Cronk, L. A.; Hebbel, K. C.; Vacek, E. P.; Krell, R. D.; Snyder, D. W. J. Med. Chem. **1990**, 33, 2437; (b) Allegretti, M.; Bertini, R.; Cesta, C. M.; Bizzarri, C.; Di Bitondo, R.; Di Cioccio, V.; Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; Russo, V.; Di Bello, N.; Nano, G.; Nicolini, L.; Locati, M.; Fantucci, P.; Florio, S.; Colotta, F. J. Med. Chem. **2005**, 48, 4312; (c) Huang, S.; Connolly, P. J.; Lin, R.; Emanuel, S.; Middleton, S. A. Bioorg. Med. Chem. Lett. **2006**, 16, 3639; (d) Rönn, R.; Sabnis, Y. A.; Gossas, T.; Åkerblom, E.; Danielson, U. H.; Hallberg, A.; Johansson, A. Bioorg. Med. Chem. Lett. **2006**, 14, 544.
- King, J. F. Acidity. In *The Chemistry of Sulfonic Acids, Ester and Their Derivatives*; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons: Chichester, 1991; pp 251– 259.

- (a) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84–96; (b) Bellis, E.; Vasilatou, K.; Kokotos, G. Synthesis 2005, 2407.
- 6. Mende, F.; Seitz, O. Angew. Chem., Int. Ed. 2007, 46, 4577.
- (a) Pelletier, J. C.; Hesson, D. P. Synlett **1995**, 1141; (b) Drummond, J. T.; Johnson, G. Tetrahedron Lett. **1988**, 29, 1653; (c) Go, A.; Kudo, S.; Takahashi, T.; Higure, R. Jpn. Pat. 06172323.
- (a) MacDonald, F. E.; Danishefsky, S. J. J. Org. Chem. **1992**, 57, 7001; (b) Richita, M. A.; Slough, G. A. Tetrahedron Lett. **1993**, 34, 6821; (c) Reddy, C. R.; Mahipal, B.; Yaragorla, S. R. Tetrahedron Lett. **2007**, 48, 7528; (d) Massah, A. R.; Asadi, B.; Hoseinpour, M.; Molseghi, A.; Kalbasi, R. J.; Naghash, H. J. Tetrahedron **2009**, 65, 7696.
- 9. Ellis, D. Tetrahedron: Asymmetry 2001, 12, 1589.
- (a) Katritzky, A. R.; Hoffmann, S.; Sukuki, K. ARKIVOC 2004, xii, 14; (b) Manabe, S.; Sugioka, T.; Ito, Y. Tetrahedron Lett. 2007, 48, 787.
- 11. Wu, X.; Rönn, R.; Gossas, T.; Larhed, M. J. Org. Chem. 2005, 70, 3094.
- 12. Chan, J.; Baucom, K. D.; Murry, J. A. J. Am. Chem. Soc. 2007, 129, 14106.
- Buswell, A. M.; Rodebush, W. H.; Roy, M. F. J. Am. Chem. Soc. **1938**, 60, 2528.
 For this substrate, an unexpected dehydration reaction proceeded to afford 20% yield of 2-(ethoxycarbonyl) benzenesulfanenitrile (**30**) at higher reaction temperature (160 °C) (see Scheme 1).
- 15. General experimental procedure for N-acylation of sulfonamide with carboxylic ester: sulfonamide (2 mmol), carboxylic ester (4 mmol), and Cl₂CHCHCl₂ (4.5 mL) were combined in a pressure tube equipped with a stir bar. The mixture was stirred at 50 °C for about 10 min, then TiCl₄ (3.0 mmol) was added and the reaction mixture was heated to 115 °C for the given time (see Table 3). After completion of the reaction (monitored by TLC), the reaction mixture was diluted with 10 mL of H₂O to remove the excess TiCl₄, then filtered, and extracted with EtOAc (3 × 15 mL), the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was evaporated in vacuo, and the crude compound was purified by flash column chromatography (silica gel, petroleum/ethyl acetate, 2:1) to afford the corresponding N-acyl sulfonamine.
- 16. All the products except compound 30 are known compounds and are also identified using ¹H NMR, LRMS, IR, and mp by comparison with previously reported data (see Supplementary data for complete details).